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Abstract

Although there have been many studies on data mining,
to date there have been few research prototypes or com-
mercial systems supporting comprehensive query-driven
mining, which encourages interactive exploration of the
data. Our thesis is that constraint constructs and the
optimization they induce play a pivotal role in mining
queries, thus substantially enhancing the usefulness and
performance of the mining system. This is based on the
analogy of declarative query languages like SQL and query
optimization which have made relational databases so suc-
cessful. To this end, our proposed demo is not yet another
data mining system, but of a new paradigm in data min-
ing { mining with constraints, as the important �rst step
towards supporting ad-hoc mining in DBMS.

In this demo, we will show a prototype exploratory mining
system that implements constraint-based mining query
optimization methods proposed in [5]. We will demon-
strate how a user can interact with the system for ex-
ploratory data mining and how e�ciently the system may
execute optimized data mining queries. The prototype
system will include all the constraint pushing techniques
for mining association rules outlined in [5], and will in-
clude additional capabilities for mining other kinds of
rules for which the computation of constrained frequent
sets forms the core �rst step.

1 Background and Signi�cance to the Community

Since the introduction of association rules [1], the develop-
ment of e�ective mechanisms for mining large databases
has been the subject of numerous studies, which can be
broadly divided into two groups. The �rst group in-
cludes studies focusing on performance and e�ciency is-
sues; while the second group includes studies that go be-
yond the initial notion of association rules to other kinds
of mined rules. Recently it has been recognized that

the integration of data mining technologies with database
management systems is of strategic importance [3]. Fur-
thermore, it has been argued that the fundamental dis-
tinction of a data mining system from a statistical analy-
sis program or a machine learning system should be that
the former o�ers an ad-hoc mining query language and
supports e�cient processing and optimization of mining
queries [4]. Sarawagi et al. [6] study the suitability of
di�erent architectures for the integration of association
mining with DBMS and study the relative performance
tradeo�s. Tsur et al. [8] explore the question of how
techniques like the well-known Apriori algorithm can be
generalized beyond their current applications to a generic
paradigm called query 
ocks.

While these are important results toward enabling the in-
tegration of association mining and DBMS, ad-hoc mining
still cannot be supported until the following fundamental
problems in the present-day model of mining, �rst iden-
ti�ed in [5], are addressed satisfactorily:

� Problem 1 { Lack of User Exploration and Control:
Mining (of associations) should be an activity that
allows for exploration on the user's part [4, 7]. How-
ever, the present day model for mining treats the
mining process as an impenetrable black-box { only
allowing the user to set the thresholds at the be-
ginning, showing the user all associations satisfy-
ing the thresholds at the end, but nothing in be-
tween. What if the user sets the wrong thresholds,
or simply wants to change them? What if the user
wants to focus the generation of rules to a speci�c,
small subset of candidates, based on properties of
the data? Such a black-box model would be tolera-
ble if the turnaround time of the computation were
small, e.g., a few seconds. However, despite the de-
velopment of many e�cient algorithms association
mining remains a process typically taking hours to
complete. Before a new invocation of the black-box,
the user is not allowed to preempt the process and
needs to wait for hours. Furthermore, typically only
a small fraction of the computed rules might be what
the user was looking for. Thus the user often incurs
a high computational cost that is disproportionate
to what the user wants and gets.

� Problem 2 { Lack of Focus:
A user may have certain broad phenomena in mind,



on which to focus the mining. For example, the user
may want to �nd associations between sets of items
whose types do not overlap, or associations from
item sets whose total price is under $100 to items
sets whose average price is at least $1,000 (thereby
verifying whether the purchases of cheap items occur
together with those of expensive ones). The inter-
face for expressing focus o�ered by the present-day
model is extremely impoverished, because it only
allows thresholds for support and con�dence to be
speci�ed.

� Problem 3 { Rigid Notion of Relationship:
The present-day model restricts the notion of associ-
ations to rules with support and con�dence that ex-
ceed given thresholds. While such associations are
useful, other notions of relationships may also be
useful. First, there exist several signi�cance metrics
other than con�dence that are equally meaningful.
For example, Brin et al. argue why correlation can
be more useful in many circumstances [2]. Second,
there may be separate criteria for selecting candi-
dates for the antecedent and consequent of a rule.
For example, the user may want to �nd associations
from sets of items to sets of types. Coming from
di�erent domains, the antecedent and consequent
may call for di�erent support thresholds and di�er-
ent conditions to be met.

To address these problems, in [5] we proposed a 2-phase
architecture for exploratory mining, which follows the fol-
lowing general principles:

1. Open up the black-box, and establish clear break-
points so as to allow user feedback.

2. Incorporate user feedback, not only for guidance and
control of the mining process, but also for acquiring
user's approval for any task involving a substantial
cost.

3. Provide the user with many opportunities to express
the focus.

4. Use the focus to ensure that the system does an
amount of computation proportional to what the
user gets. This is the �rst step towards ad hoc min-
ing of rules [4, 7].

5. Allow the user to have the 
exibility to choose the
signi�cance metrics and the criteria to be satis�ed
by the relationships to be mined.

The proposed architecture provides a rich interface for
the user to express focus. The critical component is the
notion of constrained frequent set queries (CFQs), which
o�er the user a means for specifying constraints, includ-
ing domain, class and aggregation constraints, that must
be satis�ed by the antecedents and consequents of the
rules to be mined. Moreover, towards the goal of doing
an amount of processing commensurate with the focus
speci�ed by the user, we develop in [5] various pruning
optimizations e�ected by the constraints. We introduced
two key properties called anti-monotonicity and succinct-
ness and showed how these properties of constraints can

be exploited to give powerful optimization of CFQs. We
proposed an algorithm called CAP that incorporates these
optimizations and delivers a performance that is up to 80
times faster than several algorithms based on the classical
Apriori framework.

It is important to note that the user need not know any-
thing about anti-monotonicity, succinctness, or any prop-
erties of the constraints. The constraints come from his
mining objectives and his understanding of the applica-
tion domain, just as for ad hoc DBMS queries. But based
on the characterization of the constraints given in [5],
CAP can automatically identify the best strategy for pro-
cessing the constraints and deliver a level of performance
that is commensurate with the extent of pruning induced
by the constraints.

2 What will be Demonstrated?

Our demo will show a prototype exploratory mining sys-
tem that implements the two-phase architecture outlined
in [5]. In particular, Figure 1 shows the implemented ar-
chitecture.

In the form of a constrained frequent set query, the user
initially speci�es a set of constraints C, including the sup-
port thresholds, for the antecedent and consequent. Each
constraint in C may be applicable to the antecedent, or
the consequent, or both. The output of phase I consists
of a list of pairs of candidates (Sa; Sc), for the antecedent
and consequent satisfying C, such that both Sa and Sc
have a support exceeding the thresholds initially set by
the user.

In general the candidate list can be quite large, running
in the order of tens of thousands of pairs. To help the
user browse through the candidate list conveniently, our
prototype has implemented various ways to organize the
pairs in the list. One way is to order the list with re-
spect to set inclusion and show only pairs of maximal
sets. Another is to provide ranking of the sets based on
their supports and the degrees to which they satisfy the
given constraints, thus providing feedback to the user as
to whether the constraints or the support threshold need
to be adjusted. On seeing the initial list of candidates,
the user can: (i) add, delete, or modify the constraints,
and/or (ii) adjust the support thresholds. The user may
iterate through Phase I in this manner as many times as
desired.

Once satis�ed with the current candidate list, the user can
instruct the system to proceed to Phase II, wherein the
user has the opportunity to specify: (i) the signi�cance
metric, (ii) a threshold for the metric speci�ed above, and
(iii) further conditions to be imposed on the antecedent
and consequent. For instance, if the user wishes to operate
in the classical association mining setting, the user would
choose con�dence as the signi�cance metric, give a con�-
dence threshold, and require that (Sa [ Sc) be frequent.
Alternatively, the user may wish to form rules with the
correlation of the antecedent and the consequent exceed-
ing a given threshold. In this case, the user selects cor-
relation as the signi�cance metric and speci�es the min-
imum correlation coe�cient. Essentially, the e�ort spent
in Phase II is geared towards the computation of what
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Figure 1: An Architecture for Exploratory Mining with CFQs

the user really wants. Even if Phase II involves costly
computation (e.g., computation of correlations), the user
has the �nal say in authorizing such costly operations.

Finally, the output of Phase II consists of all relation-
ships that satisfy the conditions given at the beginning of
Phase II. Upon examining this output, the user has the
opportunity to make further changes to any parameters
set before. Depending on which parameters are reset, this
may yet trigger Phase I and Phase II, or just Phase II,
computation.

A key feature of the proposed architecture is that it is
downward compatible. This means that if a user wants
only classical associations and the classical mode of in-
teraction, the user can simply set all the appropriate pa-
rameters at the beginning, and need not be prompted at
the breakpoints for feedback. Of course, we stress that
the real power of the architecture stems from its provi-
sion for human-centered exploration for rule mining, and
its implementation of the �ve principles suggested in the
previous section.

The architecture per se does not address performance is-
sues. Nonetheless, most of the pruning optimizations de-
veloped in [5] have been implemented. Thus, as part of
the demonstration, we can observe how e�ective the de-
veloped optimizations can be.

In sum, the demo will show a state-of-the-art interactive
mining system with constrained frequent sets. We believe
that this system forms the important �rst step towards
supporting ad-hoc mining of association and other related
kinds of rules, and the eventual integration of mining tech-
nologies with DBMS.
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